PaddleOCR-VL Introduction¶
PaddleOCR-VL is a SOTA and resource-efficient model tailored for document parsing. Its core component is PaddleOCR-VL-0.9B, a compact yet powerful vision-language model (VLM) that integrates a NaViT-style dynamic resolution visual encoder with the ERNIE-4.5-0.3B language model to enable accurate element recognition. This innovative model efficiently supports 109 languages and excels in recognizing complex elements (e.g., text, tables, formulas, and charts), while maintaining minimal resource consumption. Through comprehensive evaluations on widely used public benchmarks and in-house benchmarks, PaddleOCR-VL achieves SOTA performance in both page-level document parsing and element-level recognition. It significantly outperforms existing solutions, exhibits strong competitiveness against top-tier VLMs, and delivers fast inference speeds. These strengths make it highly suitable for practical deployment in real-world scenarios.
1. Environment Preparation¶
Install PaddlePaddle and PaddleOCR:
python -m pip install paddlepaddle-gpu==3.2.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
python -m pip install -U "paddleocr[doc-parser]"
python -m pip install https://paddle-whl.bj.bcebos.com/nightly/cu126/safetensors/safetensors-0.6.2.dev0-cp38-abi3-linux_x86_64.whl
For Windows users, please use WSL or a Docker container.
2. Quick Start¶
PaddleOCR-VL supports two usage methods: CLI command line and Python API. The CLI command line method is simpler and suitable for quickly verifying functionality, while the Python API method is more flexible and suitable for integration into existing projects.
2.1 Command Line Usage¶
Run a single command to quickly test the PaddleOCR-VL :
paddleocr doc_parser -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/paddleocr_vl_demo.png
# Use --use_doc_orientation_classify to enable document orientation classification
paddleocr doc_parser -i ./paddleocr_vl_demo.png --use_doc_orientation_classify True
# Use --use_doc_unwarping to enable document unwarping module
paddleocr doc_parser -i ./paddleocr_vl_demo.png --use_doc_unwarping True
# Use --use_layout_detection to enable layout detection
paddleocr doc_parser -i ./paddleocr_vl_demo.png --use_layout_detection False
Command line supports more parameters. Click to expand for detailed parameter descriptions
| Parameter | Description | Type | Default | ||
|---|---|---|---|---|---|
input |
Data to be predicted, required.
For example, the local path of an image file or PDF file: /root/data/img.jpg;Such as a URL link, for example, the network URL of an image file or PDF file:Example;Such as a local directory, which should contain the images to be predicted, for example, the local path: /root/data/(Currently, prediction for directories containing PDF files is not supported. PDF files need to be specified with a specific file path). |
str |
|||
save_path |
Specify the path where the inference result file will be saved. If not set, the inference results will not be saved locally. | str |
|||
layout_detection_model_name |
Name of the layout area detection and ranking model. If not set, the default model of the production line will be used. | str |
|||
layout_detection_model_dir |
Directory path of the layout area detection and ranking model. If not set, the official model will be downloaded. | str |
|||
layout_threshold |
Score threshold for the layout model. Any floating-point number between 0-1. If not set, the parameter value initialized by the production line will be used.float |
layout_nms |
layout_threshold |
Score threshold for the layout model. Any value between 0-1. If not set, the default value is used, which is 0.5.
|
|
Whether to use post-processing NMS for layout detection. If not set, the parameter value initialized by the production line will be used, with a default initialization of |
True .bool |
layout_unclip_ratio |
|||
Expansion coefficient for the detection boxes of the layout area detection model.
Any floating-point number greater than |
0 . If not set, the parameter value initialized by the production line will be used.float |
layout_merge_bboxes_mode |
|||
Merging mode for the detection boxes output by the model in layout detection. |
large
|
vl_rec_model_name |
|||
Name of the multimodal recognition model. If not set, the default model of the production line will be used. |
str | vl_rec_model_dir |
|||
Directory path of the multimodal recognition model. If not set, the official model will be downloaded. |
str | vl_rec_backend |
|||
Inference backend used by the multimodal recognition model. |
str | vl_rec_server_url |
|||
If the multimodal recognition model uses an inference service, this parameter is used to specify the server URL. |
str | vl_rec_max_concurrency |
|||
If the multimodal recognition model uses an inference service, this parameter is used to specify the maximum number of concurrent requests. |
str | doc_orientation_classify_model_name |
|||
Name of the document orientation classification model. If not set, the default model of the production line will be used. |
str | doc_orientation_classify_model_dir |
|||
Directory path of the document orientation classification model. If not set, the official model will be downloaded. |
str | doc_unwarping_model_name |
|||
Name of the text image rectification model. If not set, the default model of the production line will be used. |
str | doc_unwarping_model_dir |
|||
Directory path of the text image rectification model. If not set, the official model will be downloaded. |
str | use_doc_orientation_classify |
|||
Whether to load and use the document orientation classification module. If not set, the parameter value initialized by the production line will be used, with a default initialization of |
False .bool |
use_doc_unwarping |
|||
Whether to load and use the text image rectification module. If not set, the parameter value initialized by the production line will be used, with a default initialization of |
False .bool |
use_layout_detection |
|||
Whether to load and use the layout area detection and ranking module. If not set, the parameter value initialized by the production line will be used, with a default initialization of |
True .bool |
use_chart_recognition |
|||
Whether to load and use the chart parsing module. If not set, the parameter value initialized by the production line will be used, with a default initialization of |
False .bool |
bool |
|||
format_block_content |
Controls whether to format the content in block_contentas Markdown. If not set, the parameter value initialized by the production line will be used, which is initially set to Falseby default. |
bool |
|||
use_queues |
Used to control whether to enable internal queues. When set to True, data loading (such as rendering PDF pages as images), layout detection model processing, and VLM inference will be executed asynchronously in separate threads, with data passed through queues, thereby improving efficiency. This approach is particularly efficient for PDF documents with a large number of pages or directories containing a large number of images or PDF files. |
bool |
|||
prompt_label |
The prompt type setting for the VL model, which takes effect only when use_layout_detection=False. |
str |
|||
repetition_penalty |
The repetition penalty parameter used for VL model sampling. | float |
|||
temperature |
The temperature parameter used for VL model sampling. | float |
|||
top_p |
The top-p parameter used for VL model sampling. | float |
|||
min_pixels |
The minimum number of pixels allowed when the VL model preprocesses images. | int |
|||
max_pixels |
The maximum number of pixels allowed when the VL model preprocesses images. | int |
|||
device |
The device used for inference. Supports specifying specific card numbers:
|
str |
|||
enable_hpi |
Whether to enable high-performance inference. | bool |
False |
||
use_tensorrt |
Whether to enable the TensorRT subgraph engine of Paddle Inference. If the model does not support acceleration via TensorRT, acceleration will not be used even if this flag is set. For PaddlePaddle with CUDA 11.8, the compatible TensorRT version is 8.x (x>=6). It is recommended to install TensorRT 8.6.1.6. |
bool |
False |
||
precision |
Computational precision, such as fp32, fp16. | str |
fp32 |
||
enable_mkldnn |
Whether to enable MKL-DNN accelerated inference. If MKL-DNN is not available or the model does not support acceleration via MKL-DNN, acceleration will not be used even if this flag is set. | bool |
True |
||
mkldnn_cache_capacity |
MKL-DNN cache capacity. | int |
10 |
||
cpu_threads |
The number of threads used for inference on the CPU. | int |
8 |
||
paddlex_config |
The file path of the PaddleX production line configuration. | str |
The inference result will be printed in the terminal. The default output of the PP-StructureV3 pipeline is as follows:
👉Click to expand
{'res': {'input_path': 'paddleocr_vl_demo.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_layout_detection': True, 'use_chart_recognition': False, 'format_block_content': False}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 6, 'label': 'doc_title', 'score': 0.9636914134025574, 'coordinate': [np.float32(131.31366), np.float32(36.450516), np.float32(1384.522), np.float32(127.984665)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9281806349754333, 'coordinate': [np.float32(585.39465), np.float32(158.438), np.float32(930.2184), np.float32(182.57469)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9840355515480042, 'coordinate': [np.float32(9.023666), np.float32(200.86115), np.float32(361.41583), np.float32(343.8828)]}, {'cls_id': 14, 'label': 'image', 'score': 0.9871416091918945, 'coordinate': [np.float32(775.50574), np.float32(200.66502), np.float32(1503.3807), np.float32(684.9304)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9801855087280273, 'coordinate': [np.float32(9.532196), np.float32(344.90594), np.float32(361.4413), np.float32(440.8244)]}, {'cls_id': 17, 'label': 'paragraph_title', 'score': 0.9708921313285828, 'coordinate': [np.float32(28.040405), np.float32(455.87976), np.float32(341.7215), np.float32(520.7117)]}, {'cls_id': 24, 'label': 'vision_footnote', 'score': 0.9002962708473206, 'coordinate': [np.float32(809.0692), np.float32(703.70044), np.float32(1488.3016), np.float32(750.5238)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9825374484062195, 'coordinate': [np.float32(8.896561), np.float32(536.54895), np.float32(361.05237), np.float32(655.8058)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9822263717651367, 'coordinate': [np.float32(8.971573), np.float32(657.4949), np.float32(362.01715), np.float32(774.625)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9767460823059082, 'coordinate': [np.float32(9.407074), np.float32(776.5216), np.float32(361.31067), np.float32(846.82874)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9868153929710388, 'coordinate': [np.float32(8.669495), np.float32(848.2543), np.float32(361.64703), np.float32(1062.8568)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9826608300209045, 'coordinate': [np.float32(8.8025055), np.float32(1063.8615), np.float32(361.46588), np.float32(1182.8524)]}, {'cls_id': 22, 'label': 'text', 'score': 0.982555627822876, 'coordinate': [np.float32(8.820602), np.float32(1184.4663), np.float32(361.66394), np.float32(1302.4507)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9584776759147644, 'coordinate': [np.float32(9.170288), np.float32(1304.2161), np.float32(361.48898), np.float32(1351.7483)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9782056212425232, 'coordinate': [np.float32(389.1618), np.float32(200.38202), np.float32(742.7591), np.float32(295.65146)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9844875931739807, 'coordinate': [np.float32(388.73303), np.float32(297.18463), np.float32(744.00024), np.float32(441.3034)]}, {'cls_id': 17, 'label': 'paragraph_title', 'score': 0.9680547714233398, 'coordinate': [np.float32(409.39468), np.float32(455.89386), np.float32(721.7174), np.float32(520.9387)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9741666913032532, 'coordinate': [np.float32(389.71606), np.float32(536.8138), np.float32(742.7112), np.float32(608.00165)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9840384721755981, 'coordinate': [np.float32(389.30988), np.float32(609.39636), np.float32(743.09247), np.float32(750.3231)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9845995306968689, 'coordinate': [np.float32(389.13272), np.float32(751.7772), np.float32(743.058), np.float32(894.8815)]}, {'cls_id': 22, 'label': 'text', 'score': 0.984852135181427, 'coordinate': [np.float32(388.83267), np.float32(896.0371), np.float32(743.58215), np.float32(1038.7345)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9804865717887878, 'coordinate': [np.float32(389.08478), np.float32(1039.9119), np.float32(742.7585), np.float32(1134.4897)]}, {'cls_id': 22, 'label': 'text', 'score': 0.986461341381073, 'coordinate': [np.float32(388.52643), np.float32(1135.8137), np.float32(743.451), np.float32(1352.0085)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9869391918182373, 'coordinate': [np.float32(769.8341), np.float32(775.66235), np.float32(1124.9813), np.float32(1063.207)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9822869896888733, 'coordinate': [np.float32(770.30383), np.float32(1063.938), np.float32(1124.8295), np.float32(1184.2192)]}, {'cls_id': 17, 'label': 'paragraph_title', 'score': 0.9689218997955322, 'coordinate': [np.float32(791.3042), np.float32(1199.3169), np.float32(1104.4521), np.float32(1264.6985)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9713128209114075, 'coordinate': [np.float32(770.4253), np.float32(1279.6072), np.float32(1124.6917), np.float32(1351.8672)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9236552119255066, 'coordinate': [np.float32(1153.9058), np.float32(775.5814), np.float32(1334.0654), np.float32(798.1581)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9857938885688782, 'coordinate': [np.float32(1151.5197), np.float32(799.28015), np.float32(1506.3619), np.float32(991.1156)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9820687174797058, 'coordinate': [np.float32(1151.5686), np.float32(991.91095), np.float32(1506.6023), np.float32(1110.8875)]}, {'cls_id': 22, 'label': 'text', 'score': 0.9866049885749817, 'coordinate': [np.float32(1151.6919), np.float32(1112.1301), np.float32(1507.1611), np.float32(1351.9504)]}]}}}
For explanation of the result parameters, refer to 2.2 Python Script Integration.
Note: The default model for the production line is relatively large, which may result in slower inference speed. It is recommended to use inference acceleration frameworks to enhance VLM inference performance for faster inference.
2.2 Python Script Integration¶
The command line method is for quick testing and visualization. In actual projects, you usually need to integrate the model via code. You can perform pipeline inference with just a few lines of code as shown below:
from paddleocr import PaddleOCRVL
pipeline = PaddleOCRVL()
# pipeline = PaddleOCRVL(use_doc_orientation_classify=True) # Use use_doc_orientation_classify to enable/disable document orientation classification model
# pipeline = PaddleOCRVL(use_doc_unwarping=True) # Use use_doc_unwarping to enable/disable document unwarping module
# pipeline = PaddleOCRVL(use_layout_detection=False) # Use use_layout_detection to enable/disable layout detection module
output = pipeline.predict("./paddleocr_vl_demo.png")
for res in output:
res.print() ## Print the structured prediction output
res.save_to_json(save_path="output") ## Save the current image's structured result in JSON format
res.save_to_markdown(save_path="output") ## Save the current image's result in Markdown format
For PDF files, each page will be processed individually and generate a separate Markdown file. If you want to convert the entire PDF to a single Markdown file, use the following method:
from pathlib import Path
from paddleocr import PaddleOCRVL
input_file = "./your_pdf_file.pdf"
output_path = Path("./output")
pipeline = PaddleOCRVL()
output = pipeline.predict(input=input_file)
markdown_list = []
markdown_images = []
for res in output:
md_info = res.markdown
markdown_list.append(md_info)
markdown_images.append(md_info.get("markdown_images", {}))
markdown_texts = pipeline.concatenate_markdown_pages(markdown_list)
mkd_file_path = output_path / f"{Path(input_file).stem}.md"
mkd_file_path.parent.mkdir(parents=True, exist_ok=True)
with open(mkd_file_path, "w", encoding="utf-8") as f:
f.write(markdown_texts)
for item in markdown_images:
if item:
for path, image in item.items():
file_path = output_path / path
file_path.parent.mkdir(parents=True, exist_ok=True)
image.save(file_path)
Note:
- In the example code, the parameters
use_doc_orientation_classifyanduse_doc_unwarpingare all set toFalseby default. These indicate that document orientation classification and document image unwarping are disabled. You can manually set them toTrueif needed.
The above Python script performs the following steps:
(1) Instantiate the production line object. Specific parameter descriptions are as follows:
| Parameter | Parameter Description | Parameter Type | Default Value |
|---|---|---|---|
layout_detection_model_name |
Name of the layout area detection and ranking model. If set to None, the default model of the production line will be used. |
str|None |
None |
layout_detection_model_dir |
Directory path of the layout area detection and ranking model. If set to None, the official model will be downloaded. |
str|None |
None |
layout_threshold |
Score threshold for the layout model.
|
, the parameter value initialized by the production line will be used. |
float|dict|None |
None |
layout_nms Whether to use post-processing NMS for layout detection. If set toNone |
, the parameter value initialized by the production line will be used. |
bool|None |
None |
layout_unclip_ratio
|
, the parameter value initialized by the production line will be used. |
float|Tuple[float,float]|dict|None |
None |
layout_merge_bboxes_mode
|
, the parameter value initialized by the production line will be used. |
str|dict|None |
None |
vl_rec_model_name Name of the multimodal recognition model. If set toNone |
, the default model of the production line will be used. |
str|None |
None |
vl_rec_model_dir Directory path of the multimodal recognition model. If set toNone |
, the official model will be downloaded. |
str|None |
None |
vl_rec_backend | Inference backend used by the multimodal recognition model. |
int|None |
None |
vl_rec_server_url | If the multimodal recognition model uses an inference service, this parameter is used to specify the server URL. |
str|None |
None |
vl_rec_max_concurrency | If the multimodal recognition model uses an inference service, this parameter is used to specify the maximum number of concurrent requests. |
str|None |
None |
doc_orientation_classify_model_name Name of the document orientation classification model. If set toNone |
, the default model of the production line will be used. |
str|None |
None |
doc_orientation_classify_model_dir Directory path of the document orientation classification model. If set toNone |
, the official model will be downloaded. |
str|None |
doc_unwarping_model_name |
Name of the text image rectification model. If set to None, the default model of the production line will be used. |
str|None |
None |
doc_unwarping_model_dir |
Directory path of the text image rectification model. If set to None, the official model will be downloaded. |
str|None |
None |
use_doc_orientation_classify |
Whether to load and use the document orientation classification module. If set to None, the parameter value initialized by the production line will be used, and it is initialized to False by default. |
bool|None |
None |
use_doc_unwarping |
Whether to load and use the text image rectification module. If set to None, the parameter value initialized by the production line will be used, and it is initialized to False by default. |
bool|None |
None |
use_layout_detection |
Whether to load and use the layout area detection and sorting module. If set to None, the parameter value initialized by the production line will be used, and it is initialized to True by default. |
bool|None |
None |
use_chart_recognition |
Whether to load and use the chart parsing module. If set to None, the parameter value initialized by the production line will be used, and it is initialized to False by default. |
bool|None |
None |
format_block_content |
Controls whether to format the content in block_content into Markdown format. If set to None, the parameter value initialized by the production line will be used, and it is initialized to False by default. |
bool|None |
None |
device |
Device used for inference. Supports specifying specific card numbers:
|
str|None |
None |
enable_hpi |
Whether to enable high-performance inference. | bool |
False |
use_tensorrt |
Whether to enable the TensorRT subgraph engine of Paddle Inference. If the model does not support acceleration via TensorRT, acceleration will not be used even if this flag is set. For PaddlePaddle with CUDA 11.8, the compatible TensorRT version is 8.x (x>=6), and it is recommended to install TensorRT 8.6.1.6. |
bool |
False |
precision |
Computational precision, such as fp32, fp16. | str |
"fp32" |
enable_mkldnn |
Whether to enable MKL-DNN accelerated inference. If MKL-DNN is not available or the model does not support acceleration via MKL-DNN, acceleration will not be used even if this flag is set. | bool |
True |
mkldnn_cache_capacity |
MKL-DNN cache capacity. | int |
10 |
cpu_threads |
Number of threads used for inference on the CPU. | int |
8 |
paddlex_config |
Path to the PaddleX production line configuration file. | str|None |
None |
(2) Call the predict()method of the PaddleOCR-VL production line object for inference prediction. This method will return a list of results. Additionally, the production line also provides the predict_iter()Method. The two are completely consistent in terms of parameter acceptance and result return. The difference lies in that predict_iter()returns a generator, which can process and obtain prediction results step by step. It is suitable for scenarios involving large datasets or where memory conservation is desired. You can choose either of these two methods based on actual needs. Below are the parameters of the predict()method and their descriptions:
| Parameter | Parameter Description | Parameter Type | Default Value |
|---|---|---|---|
input |
Data to be predicted, supporting multiple input types. Required.
|
Python Var|str|list |
|
use_doc_orientation_classify |
Whether to use the document orientation classification module during inference. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
bool|None |
None |
use_doc_unwarping |
Whether to use the text image rectification module during inference. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
bool|None |
None |
use_layout_detection |
Whether to use the layout region detection and sorting module during inference. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
bool|None |
None |
use_chart_recognition |
Whether to use the chart parsing module during inference. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
bool|None |
None |
layout_threshold |
The parameter meaning is basically the same as the instantiation parameter. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
float|dict|None |
None |
layout_nms |
The parameter meaning is basically the same as the instantiation parameter. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
bool|None |
None |
layout_unclip_ratio |
The parameter meaning is basically the same as the instantiation parameter. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
float|Tuple[float,float]|dict|None |
None |
layout_merge_bboxes_mode |
The parameter meaning is basically the same as the instantiation parameter. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
str|dict|None |
None |
use_queues |
Used to control whether to enable internal queues. When set to True, data loading (such as rendering PDF pages as images), layout detection model processing, and VLM inference will be executed asynchronously in separate threads, with data passed through queues, thereby improving efficiency. This approach is particularly efficient for PDF documents with many pages or directories containing a large number of images or PDF files. |
bool|None |
None |
prompt_label |
The prompt type setting for the VL model, which takes effect only when use_layout_detection=False. |
str|None |
None |
format_block_content |
The parameter meaning is basically the same as the instantiation parameter. Setting it to Nonemeans using the instantiation parameter; otherwise, this parameter takes precedence. |
bool|None |
None |
repetition_penalty |
The repetition penalty parameter used for VL model sampling. | float|None |
None |
temperature |
Temperature parameter used for VL model sampling. | float|None |
None |
top_p |
Top-p parameter used for VL model sampling. | float|None |
None |
min_pixels |
The minimum number of pixels allowed when the VL model preprocesses images. | int|None |
None |
max_pixels |
The maximum number of pixels allowed when the VL model preprocesses images. | int|None |
None |
(3) Process the prediction results: The prediction result for each sample is a corresponding Result object, supporting operations such as printing, saving as an image, and saving as a jsonfile:
| Method | Method Description | Parameter | Parameter Type | Parameter Description | Default Value |
|---|---|---|---|---|---|
print() |
Print results to the terminal | format_json |
bool |
Whether to format the output content using JSONindentation. |
True |
indent |
int |
Specify the indentation level to beautify the output JSONdata, making it more readable. Only valid when format_jsonis True. |
4 | ||
ensure_ascii |
bool |
Control whether non- ASCIIcharacters are escaped as Unicode. When set to True, all non- ASCIIcharacters will be escaped; Falseretains the original characters. Only valid when format_jsonis True. |
False |
||
save_to_json() |
Save the results as a json format file | save_path |
str |
The file path for saving. When it is a directory, the saved file name will be consistent with the input file type naming. | None |
indent |
int |
Specify the indentation level to beautify the output JSONdata, making it more readable. Only valid when format_jsonis True. |
4 | ||
ensure_ascii |
bool |
Control whether non- ASCIIcharacters are escaped as Unicode. When set to True, all non- ASCIIcharacters will be escaped; Falseretains the original characters. Only valid when format_jsonis True. |
False |
||
save_to_img() |
Save the visualized images of each intermediate module in png format | save_path |
str |
The file path for saving, supporting directory or file paths. | None |
save_to_markdown() |
Save each page in an image or PDF file as a markdown format file separately | save_path |
str |
The file path for saving. When it is a directory, the saved file name will be consistent with the input file type naming | None |
pretty |
bool |
Whether to beautify the markdownoutput results, centering charts, etc., to make the markdownrendering more aesthetically pleasing. |
True | ||
show_formula_number |
bool |
Control whether to retain formula numbers in markdown. When set to True, all formula numbers are retained; Falseretains only the formulas |
False |
||
save_to_html() |
Save the tables in the file as html format files | save_path |
str |
The file path for saving, supporting directory or file paths. | None |
save_to_xlsx() |
Save the tables in the file as xlsx format files | save_path |
str |
The file path for saving, supporting directory or file paths. | None |
| Attribute | Attribute Description |
|---|---|
json |
Obtain the prediction jsonresult in the format |
img |
obtain in the format of dictvisualized image |
markdown |
obtain in the format of dictmarkdown result |
3. Enhancing VLM Inference Performance Using Inference Acceleration Frameworks¶
The inference performance under the default configuration has not been fully optimized and may not meet actual production requirements. PaddleOCR supports enhancing the inference performance of VLM through inference acceleration frameworks such as vLLM and SGLang, thereby accelerating the inference speed in production lines. The usage process mainly consists of two steps:
- Start the VLM inference service;
- Configure the PaddleOCR production line to invoke the VLM inference service as a client.
3.1 Starting the VLM Inference Service¶
3.1.1 Using Docker Images¶
PaddleOCR provides Docker images for quickly starting the vLLM inference service. The service can be started using the following command:
docker run \
-it \
--rm \
--gpus all \
--network host \
ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddlex-genai-vllm-server
The service listens on port 8080 by default.
When starting the container, you can pass in parameters to override the default configuration. The parameters are consistent with the paddleocr genai_server command (see the next subsection for details). For example:
docker run \
-it \
--rm \
--gpus all \
--network host \
ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddlex-genai-vllm-server \
paddlex_genai_server --model_name PaddleOCR-VL-0.9B --host 0.0.0.0 --port 8118 --backend vllm
3.1.2 Installation and Usage via PaddleOCR CLI¶
Since the inference acceleration framework may have dependency conflicts with the PaddlePaddle framework, it is recommended to install it in a virtual environment. Taking vLLM as an example:
# Create a virtual environment
python -m venv .venv
# Activate the environment
source .venv/bin/activate
# Install PaddleOCR
python -m pip install "paddleocr[doc-parser]"
# Install dependencies for inference acceleration service
paddleocr install_genai_server_deps vllm
Usage of the paddleocr install_genai_server_deps command:
The currently supported frameworks are named vllm and sglang, corresponding to vLLM and SGLang, respectively.
After installation, you can start the service using the paddleocr genai_server command:
The parameters supported by this command are as follows:
| Parameter | Description |
|---|---|
--model_name |
Model name |
--model_dir |
Model directory |
--host |
Server hostname |
--port |
Server port number |
--backend |
Backend name, i.e., the name of the inference acceleration framework used. Options are vllm or sglang. |
--backend_config |
A YAML file can be specified, which contains backend configurations. |
3.2 How to Use the Client¶
After starting the VLM inference service, the client can invoke the service through PaddleOCR.
3.2.1 CLI Invocation¶
The backend type (vllm-server or sglang-server) can be specified via --vl_rec_backend, and the service address can be specified via --vl_rec_server_url. For example:
paddleocr doc_parser --input paddleocr_vl_demo.png --vl_rec_backend vllm-server --vl_rec_server_url http://127.0.0.1:8118/v1
3.2.2 Python API Invocation¶
Pass the vl_rec_backend and vl_rec_server_url parameters when creating the PaddleOCRVL object:
3.2.3 Service-Oriented Deployment¶
The fields VLRecognition.genai_config.backend and VLRecognition.genai_config.server_url can be modified in the configuration file, for example:
3.3 Performance Tuning¶
The default configuration is tuned on a single NVIDIA A100 and assumes exclusive client service, so it may not be suitable for other environments. If users encounter performance issues during actual use, they can try the following optimization methods.
3.3.1 Server-side Parameter Adjustment¶
Different inference acceleration frameworks support different parameters. Refer to their respective official documentation to learn about available parameters and when to adjust them:
The PaddleOCR VLM inference service supports parameter tuning through configuration files. The following example demonstrates how to adjust the gpu-memory-utilization and max-num-seqs parameters of the vLLM server:
- Create a YAML file named
vllm_config.yamlwith the following content:
gpu-memory-utilization: 0.3
max-num-seqs: 128
2. Specify the configuration file path when starting the service, for example, using the `paddleocr genai_server` command:
```bash
paddleocr genai_server --model_name PaddleOCR-VL-0.9B --backend vllm --backend_config vllm_config.yaml
If you are using a shell that supports process substitution (such as Bash), you can also pass configuration items directly when starting the service without creating a configuration file:
```bash
paddleocr genai_server --model_name PaddleOCR-VL-0.9B --backend vllm --backend_config <(echo -e 'gpu-memory-utilization: 0.3\nmax-num-seqs: 128')
3.3.2 Client-Side Parameter Adjustment¶
PaddleOCR groups sub-images from single or multiple input images and initiates concurrent requests to the server. Therefore, the number of concurrent requests significantly impacts performance.
- For the CLI and Python API, the maximum number of concurrent requests can be adjusted using the
vl_rec_max_concurrencyparameter. - For service-based deployment, modify the
VLRecognition.genai_config.max_concurrencyfield in the configuration file.
When there is a one-to-one correspondence between the client and the VLM inference service, and the server-side resources are sufficient, the number of concurrent requests can be appropriately increased to enhance performance. If the server needs to support multiple clients or has limited computational resources, the number of concurrent requests should be reduced to prevent service abnormalities caused by resource overload.
3.3.3 Recommendations for Performance Tuning on Common Hardware¶
The following configurations are tailored for scenarios with a one-to-one correspondence between the client and the VLM inference service.
NVIDIA RTX 3060
- Server-Side
- vLLM:
gpu-memory-utilization=0.8